欢乐牛牛

欢迎访问 欢乐牛牛,今天是

(小麦 × 长穗偃麦草)F1欢乐牛牛与长穗偃麦草生物量积累相关性状的比较

汪文佳 宋运贤 胡伟娟 李滨 郑琪 李振声 李宏伟

引用本文: 汪文佳,宋运贤,胡伟娟,李滨,郑琪,李振声,李宏伟. (小麦 × 长穗偃麦草)F与长穗偃麦草生物量积累相关性状的比较. 欢乐牛牛, 2020, 37(0): 1-12 doi: 10.11829/j.issn.1001-0629.2020-0001 shu
Citation:  WANG W J, SONG Y X, HU W J, LI B, ZHENG Q, LI Z S, LI H W. Comparison of biomass accumulation-related traits in the F hybrids of common wheat and tall wheatgrass and their parents. Pratacultural Science, 2020, 37(0): 1-12 doi: 10.11829/j.issn.1001-0629.2020-0001 shu

(小麦 × 长穗偃麦草)F1与长穗偃麦草生物量积累相关性状的比较

    通讯作者: 宋运贤, 李宏伟, hwli@genetics.ac.cn
摘要: 为探索(小麦Triticum aestivum × 长穗偃麦草Thinopyrum ponticum) F1作为牧草的应用潜力,本研究以(中农28 × 长穗偃麦草) F1 (以下简称草F1) 及其亲本为材料,对草F1的表型组与牧草产量做了初步研究。不同发育时期表型组测定表明,与长穗偃麦草相比,草F1的单株投影面积和紧密度在分蘖期―开花期显著升高(P < 0.05),欢乐牛牛度在分蘖期―抽穗期升高,在分蘖期和抽穗期纵向矩形宽和纵向矩形高升高,而平均绿色深度降低;一次刈割再生23 d草F1的紧密度和平均绿色深度显著升高而纵向矩形宽显著降低。拔节期草F1的单株总叶片数、最大展开叶叶长与叶宽及一次刈割再生23 d的单株鲜重等均显著高于长穗偃麦草;而分蘖数、株高、单株最大鲜重等与长穗偃麦草差异不显著(P > 0.05)。草F1的开花期比长穗偃麦草显著提前。草F1的光合速率、气孔导度、胞间二氧化碳浓度等与长穗偃麦草差异不显著,但叶片光合能力显著增加。与长穗偃麦草相比,草F1的总叶绿素和类胡萝卜素含量显著升高而丙二醛含量显著降低。6月1日前后草F1的果糖、蔗糖和淀粉等含量显著高于长穗偃麦草,而葡萄糖含量则显著低于长穗偃麦草。在北京和南皮,无论一年三次、两次还是一次刈割,草F1的鲜草产量均高于长穗偃麦草。特别是种子直播当代草F1鲜草产量比长穗偃麦草增加61.9%~103.5%。全生育期两次刈割产量最高,第1次刈割在6月1日前后可兼顾产量和品质。本研究结果表明,草F1作为牧草具有较大的应用潜力。

English

    1. [1]

      李志丹, 干友民, 泽柏, 张新全, 霍尚峰.  牧草改良盐渍化土壤理化性质研究进展[J]. 欢乐牛牛, 2004, 21(6): 17-21.
      LI Z D, YU Y M, ZE B, ZHANG Q X, HUO S F.  Research progress on forage to improve saline-alkali soil[J]. Pratacultural Science, 2004, 21(6): 17-21.

    2. [2]

      刘克彪.  盐渍化沙地土壤旱化过程中植被的变化[J]. 欢乐牛牛, 2005, 22(10): 7-10.
      LIU K B.  The change of vegetation during soil aridity in saline land[J]. Pratacultural Science, 2005, 22(10): 7-10.

    3. [3]

      张耿, 王赞, 高洪文, 那潼, 郭丹丹.  21份偃麦草属牧草苗期耐盐性评价[J]. 欢乐牛牛, 2008, 25(1): 51-54.
      ZHANG G, WANG Z, GAO H W, NA T, GUO D D.  Comprehensive evaluation of salt tolerance at seedling stage in Elytrigia accessions[J]. Pratacultural Science, 2008, 25(1): 51-54.

    4. [4]

      于林清, 云锦凤.  中国牧草育种研究进展[J]. 中国草地, 2005, 27(3): 61-64.
      YU L Q, YUN J F.  Advances in forage breeding in China[J]. Grassland of China, 2005, 27(3): 61-64.

    5. [5]

      崔国文.  中国牧草育种工作的发展、现状与任务[J]. 欢乐牛牛, 2008, 25(1): 42-46.
      CUI G W.  Perspective, present and tasks in forage breeding in China[J]. Pratacultural Science, 2008, 25(1): 42-46.

    6. [6]

      李源, 游永亮, 赵海明, 武瑞鑫, 刘贵波, 张泽阳, 孙海霞.  河北省牧草育种现状分析及发展建议[J]. 中国草地学报, 2019, 41(3): 159-166.
      LI Y, YOU Y L, ZHAO H M, WU R X, LIU G B, ZHANG Z Y, SUN H X.  Status analysis and development proposal of forage breeding in Hebei province[J]. Chinese Journal of Grassland, 2019, 41(3): 159-166.

    7. [7]

      欢乐牛牛 ASAY K H, JENSEN K B. Wheatgrass. In: Moser L E et al (ed.) Cool-season forage grasses. Agron. Monogr. No. 34 ASA, CSSA, SSSA, Madison, WI. 1996, (34): 691-724.

    8. [8]

      ROGERS A L, AND BAILEY E T.  Salt tolerance trials with forage plants in south Western Australia[J]. Australian Journal of Experimental Agriculture and Animal Husbandry, 1963, 3(9): 125-130. doi:

    9. [9]

      SHANNON M C.  Testing salt tolerance variability among tall wheatgrass lines[J]. Agronomy Journal, 1978, 70(5): 719-722. doi:

    10. [10]

      WEIMBERG R, SHANNON M C.  Vigor and salt tolerance in 3 lines of tall wheatgrass[J]. Physiologia Plantarum, 1988, 73(2): 232-237. doi:

    11. [11]

      GUO Q, MENG L, MAO P C, TIAN X X.  Salt tolerance in two tall wheatgrass species is associated with selective capacity for K+ over Na+[J]. Acta Physiologiae Plantarum, 2015, 37(): 1708-. doi:

    12. [12]

      SCHEINOST P, TILLEY D, OGLE D, STANNARD M. Plant guide for tall wheatgrass (Thinopyrum ponticum). In: Natural resources conservation service, United States Department of Agriculture (Eds.). Aberdeen: USDA NRCS, IDPMC. 2008.

    13. [13]

      SMITH K F.  Tall wheatgrass (Thinopyrum ponticum (Podp.) Z. W. Liu and R. R. C. Wang): A neglected resource in Australian pasture[J]. New Zealand Journal of Agricultural Research欢乐牛牛, 1996, (39): 623-627.

    14. [14]

      欢乐牛牛 MADDALONI J, FERRARI L. Forrajeras y pasturas del ecosistema templado hu′medo de la Argentina. 2nd. ed. Argentina: INTA-Universidad Nacional Lomas de Zamora, 2001.

    15. [15]

      陈宝书. 牧草饲料作物栽培学. 北京: 中国农业出版社, 2001: 334-337.
      CHEN B S. Cultivation of forage crops. Beijing: China Agriculture Press, 2001: 334-337.

    16. [16]

      谷安琳.  耐盐碱栽培牧草——长穗薄冰草[J]. 中国草地, 2004, 26(2): 9-.
      GU A L.  Cultivation of Salt-tolerant grass——E. elongata[J]. Grassland of China, 2004, 26(2): 9-.

    17. [17]

      BORRAJO C I, SANCHEZ-MOREIRAS A M, REIGOSA, M J.  Morpho-physiological responses of tall wheatgrass populations to different levels of water stress[J]. Plos One, 2018, 13(12): e0209281-. doi:

    18. [18]

      李振声, 陈潄阳, 刘冠军, 李蓉玲.  小麦与偃麦草远缘杂交的研究[J]. 科学通报, 1962, (4): 42-44.
      LI Z S, CHEN S Y, LIU G J, LI R L.  The study on distant hybridization between wheat and Elytrigia[J]. Chinese Science Bulletin欢乐牛牛, 1962, (4): 42-44.

    19. [19]

      李振声.  创造新物种与改良旧物种——远缘杂交在作物育种中的作用[J]. 中国农业科学, 1977, (3): 38-42.
      LI Z S.  The role of distant hybridization in crop breeding——creating new and improving old species[J]. Scientia Agricultura Sinica, 1977, (3): 38-42.

    20. [20]

      H. B. 齐津著, 胡启德等译. 植物远缘杂交. 科学出版社, 1957.
      Цицин H B. Plants distant hybridization. HU Q D et al. translated. Science Press, 1957.

    21. [21]

      李家洋. 李振声论文选集. 北京: 科学出版社. 2007.
      欢乐牛牛 LI J Y. Selected papers of Li Zhensheng. Science Press. 2007.

    22. [22]

      DICKEDUISBERG M, LASER H, TONN B, ISSELSTEIN, J.  Tall wheatgrass (Agropyron elongatum) for biogas production: Crop management more important for biomass and methane yield than grass provenance[J]. Industrial Crops and Products, 2017, 97(): 653-663. doi:

    23. [23]

      MARTYNIAK D, ZUREK G, PROKOPIUK K.  Biomass yield and quality of wild populations of tall wheatgrass [Elymus elongatus (Host.) Runemark][J]. Biomass Bioenergy, 2017, 101(): 21-29. doi:

    24. [24]

      CHEN D, NEUMANN K, FRIEDEL S, KILIAN B, CHEN M, ALTMANN T, KLUKAS C.  Dissecting the phenotypic components of crop plant growth and drought responses based on high-throughput image analysis[J]. Plant Cell, 2014, 26(12): 4636-4655. doi:

    25. [25]

      CAMPBELL M T, KNECHT A C, BERGER B, BRIEN C J, WANG D, WALIA H.  Integrating image-based phenomics and association analysis to dissect the genetic architecture of temporal salinity responses in rice[J]. Plant Physiology, 2015, 168(4): 1476-1697. doi:

    26. [26]

      PARENT B, SHAHINNIA F, MAPHOSA L, BERGER B, RABIE H, CHALMERS K, KOVALCHUK A, LANGRIDGE P, FLEURY D.  Combining field performance with controlled environment plant imaging to identify the genetic control of growth and transpiration underlying yield response to water-deficit stress in wheat[J]. Journal of Experimental Botany, 2015, 66(18): 5481-5492. doi:

    27. [27]

      NEUMANN K, ZHAO Y S, CHU J T, KEILWAGEN J, REIF J C, KILIAN B, GRANER A.  Genetic architecture and temporal patterns of biomass accumulation in spring barley revealed by image analysis[J]. BMC Plant Biology欢乐牛牛, 2017, 137(): 2-12.

    28. [28]

      GUO Z L, YANG W N, CHANG Y, MA X S, TU H F, XIONG F, JIANG N, FENG H, HUANG C L, YANG P, ZHAO H, CHEN G X., LIU H Y, LUO L J, HU H H, LIU Q, XIONG L Z.  Genome-wide association studies of image traits reveal genetic architecture of drought resistance in rice[J]. Molecular Plant, 2018, 11(6): 789-805. doi:

    29. [29]

      王义芹, 杨兴洪, 李滨, 童依平, 李振声.  小麦叶面积及光合速率与产量关系的研究[J]. 华北农学报, 2008, 23(S2): 10-15. doi:
      WANG Y Q, YANG X H, LI B, TONG Y P, LI Z S.  Study on the relation between leaf area, photosynthetic rate and yield of wheat[J]. Acta Agriculturae Boreali-Sinica, 2008, 23(S2): 10-15. doi:

    30. [30]

      ARNON DI.  Copper enzymes in isolated chloroplasts. Polyphenoloxidase in beta vulgaris[J]. Plant Physiology, 1949, 24(1): 1-15. doi:

    31. [31]

      LICHTENTHALER H K, WELLBURN A R.  Determinations of total carotenoids and chlorophylls a and b of leaf extracts in different solvents[J]. Biochemical Society Transactions, 1983, 11(5): 591-592. doi:

    32. [32]

      李柏林, 梅慧生.  燕麦叶片衰老与活性氧代谢的关系[J]. 植物生理学报, 1989, 15(1): 6-12. doi:
      LI B L, MEI H S.  Relationship between oat leaf senescence and activated oxygen metabolism[J]. Acta Phytophysiologica Sinica, 1989, 15(1): 6-12. doi:

    33. [33]

      MIRON D, SCHAFFER A A.  Sucrose phosphate synthase, sucrose synthase, and invertase activities in developing fruit of lycopersicon esculentum mill. And the sucrose accumulating Lycopersicon hirsutum Humb. and Bonpl[J]. Plant Physiology, 1991, 95(2): 623-627. doi:

    34. [34]

      张国芳, 王北洪, 孟林, 马智宏.  四种偃麦草光合特性日变化分析[J]. 草地学报, 2005, 13(4): 344-348. doi:
      ZHANG G F, WANG B H, MEN L, MA Z H.  Study on the diurnal variations of photosynthetic characteristics of four Elytrigia Desv[J]. Acta Agrestia Sinica, 2005, 13(4): 344-348. doi:

    35. [35]

      彭远英, 彭正松, 宋会兴.  小麦中国春背景下长穗偃麦草光合作用相关基因的染色体定位[J]. 中国农业科学, 2005, 38(11): 2182-2188. doi:
      PENG Y Y, PEN Z S, SONG H X.  Chromosomal location of the genes associated with photosynthesis of Lophopyrum elongatum (Host) A. Löve in Chinese Spring background[J]. Scientia Agricultura Sinica, 2005, 38(11): 2182-2188. doi:

    36. [36]

      陈士强, 黄泽峰, 戴毅, 秦树文, 高营营, 高勇, 陈建民.  长穗偃麦草E组染色体对小麦光合速率和产量性状的效应[J]. 扬州大学学报, 2013, 34(1): 54-59.
      CEHN S Q, HUANG Z F, DAI Y, QIN S W, GAO Y Y, GAO Y, CHEN J M.  Effects of E chromosome of Thinopyrum ponticum on photosynthesis and yield characters in wheat[J]. Journal of Yangzhou University (Agricultural and Life Science Edition)欢乐牛牛, 2013, 34(1): 54-59.

    37. [37]

      WARREN B E, CASSON T.  Performance of sheep grazing salt tolerant forages on revegetated salt land[J]. Proceedings of the Australian Society of Animal Production, 1992, (19): 237-.

    38. [38]

      欢乐牛牛 RUMERY M G A, RAMIG R E. Irrigated bromegrass, intermediate and tall wheatgrass pastures for dairy cows. S. B. 484. College of Agric. & Home Econ., and the Agric. Exp. Univ. Nebraska, Lincoln, NE. 1964.

    39. [39]

      SMITH K F, LEE C K, BORG P T, FLINN P C.  Yield, Nutritive-value, and phenotypic variability of tall wheatgrass grown in a nonsaline environment[J]. Australian Journal of Experimental Agriculture, 1994, 34(5): 609-614. doi:

    40. [40]

      STROH J R, LAW A G.  Effects of defoliation on longevity of stand dry matter yields and forage quality of tall Wheatgrass Agropyron Elongatum (Host) Beauv[J]. Agronomy Journal, 1967, 59(5): 432-435. doi:

    41. [41]

      JAFARI A A, ELMI A, BAKHTIARI M.  Evaluation of yield and quality traits in 17 populations of tall wheatgrass (Agropyron Elongatum) grown in rain fed area of Iran, under two cutting management[J]. Romanian Agricultural Research, 2014, (31): 49-58.

    42. [42]

      欢乐牛牛 ALDERSON J, SHARP W C. Grass varieties in the United States. USDA-SCS Agric. Handb, 170, U. S. Gov. Pint. Office, Washington, DC. 1994.

    43. [43]

      VOGEL K P, MOORE K. J..  Forage yield and quality of tall wheatgrass accessions in the USDA germplasm collection[J]. Crop Science欢乐牛牛, 1998, (38): 509-512.

    44. [44]

      TRAMMELL M A, BUTLER T J, WORD K M, HOPKINS A A, BRUMMER E C.  Registration of NFTW6001 tall wheatgrass germplasm[J]. Journal of Plant Registrations, 2016, 10(2): 166-170. doi:

    45. [45]

      欢乐牛牛 ORAM R N. Register of Australian herbage plant cultivars. 3rd Edn, 1990, pp: 95–96.

    46. [46]

      SMITH K F, KELMAN W M.  Register of Australian herbage plant cultivars-A. Grasses-2. Perennial ryegrass-Lolium perenne L. (perennial ryegrass) cv. Avalon[J]. Australian Journal of Experimental Agriculture, 2000, 40(8): 119-120.

    47. [47]

      JENKINS S, BARRETT-LENNARD E G, RENGEL Z.  Impacts of waterlogging and salinity on puccinellia (Puccinellia ciliata) and tall wheatgrass (Thinopyrum ponticum): zonation on saltland with a shallow water-table, plant growth, and Na+ and K+ concentrations in the leaves[J]. Plant Soil欢乐牛牛, 2010, (329): 91-104.

    1. [1]

      文雅周培张忠雪段媛媛冯甘霖邓雨森郭正刚 . 施氮和灌溉互作对垂穗披碱草生物量及构成要素的影响. 欢乐牛牛, doi: 

    2. [2]

      冯甘霖文雅段媛媛郭正刚 . 灌溉量和密度对垂穗披碱草生长性能和物质分配的影响. 欢乐牛牛, doi: 

    3. [3]

      周树峰郭超贺俊董小龙唐祈林潘光堂吴元奇荣廷昭 . 野生薏苡在我国西南地区的饲用前景、进展与存在问题. 欢乐牛牛, doi:  欢乐牛牛

    4. [4]

      谢瑞娟张小晶刘金平游明鸿郭海燕 . 干旱和遮阴对荩草构件形态及生物量分配的影响. 欢乐牛牛, doi:  欢乐牛牛

    5. [5]

      朱铁霞高凯王琳高阳 . 断根时间和断根半径对菊芋根系生物量及其水平分布的影响. 欢乐牛牛, doi: 

    6. [6]

      田浩然杨傲刘航铄何刘贵杰赵航麻莹 . 盐碱胁迫对碱地肤的生物量及含氮化合物的影响. 欢乐牛牛, doi: 

    7. [7]

      李明月王晓凌秦荣荣郭亚丹 . 留茬高度与修剪频率互作对意大利黑麦草补偿性生长的影响. 欢乐牛牛, doi: 

    8. [8]

      林选栋武文莉林丽果周钰佩刘慧霞 . 不同盐胁迫水平下硅对高羊茅幼苗生物量、酶活性和渗透调节物质的影响. 欢乐牛牛, doi: 

    9. [9]

      屈皖华李志刚李 健 . 施用有机物料对沙化土壤碳氮含量、酶活性及紫花苜蓿生物量的影响. 欢乐牛牛, doi:  欢乐牛牛

    10. [10]

      吴冬强冯萌于成李天银吴德斌郭正刚 . 铁、锌配施对紫花苜蓿生物量和光合特征的影响. 欢乐牛牛, doi:  欢乐牛牛

    11. [11]

      张丽珍陈伟史静刘建荣王德宏陈本建 . 腐殖酸钠对紫花苜蓿生长及生物量的影响. 欢乐牛牛, doi: 

    12. [12]

      苏淑兰肖建设裴青生李晓东苏文将 . 放牧对高寒草地植被生长的影响及其生物量预测模型构建. 欢乐牛牛, doi:  欢乐牛牛

    13. [13]

      李源游永亮赵海明武瑞鑫刘贵波 . BMR基因型高粱不育系主要农艺性状的配合力效应. 欢乐牛牛, doi:  欢乐牛牛

    14. [14]

      洪江涛吴建波王小丹 . 放牧和围封对藏北高寒草原紫花针茅群落生物量分配及碳、氮、磷储量的影响. 欢乐牛牛, doi: 

    15. [15]

      张仁懿史小明李文金郭睿王刚 . 亚高寒草甸物种内稳性与 生物量变化模式. 欢乐牛牛, doi:  欢乐牛牛

    16. [16]

      王旭盛罗涵夫张巨明 . 过量使用抗倒酯对海滨雀稗草坪生长的影响. 欢乐牛牛, doi:  欢乐牛牛

    17. [17]

      郭理想杨婕妤龙明秀马文雪岳佳铭刘洁臧琳呼天明何树斌 . AMF对不同水分条件下紫花苜蓿生态化学计量学特征的影响. 欢乐牛牛, doi: 

    18. [18]

      张建全张吉宇王彦荣韩天文 . 高寒草甸退化草地引种适应性. 欢乐牛牛,

    19. [19]

      李江文韩国栋李治国王忠武康萨如拉任海燕于丰源 . 无芒隐子草地上部分功能性状对长期放牧的变异性响应. 欢乐牛牛, doi: 

    20. [20]

      柴林荣孙义王宏常生华侯扶江程云湘 . 牦牛放牧强度对甘南高寒草甸群落特征与牧草品质的影响. 欢乐牛牛, doi: 

  • 欢乐牛牛

    图 1  不同发育时期草F1与双亲表型组参数比较

    Figure 1.  Comparison of phenomic parameters in the Triticum aestivum × Thinopyrum ponticum F1 hybrid and its parents at different stages

    图 2  (小麦 × 长穗偃麦草) F1及双亲气体交换参数比较

    Figure 2.  Comparison of gas exchange parameters in the Triticum aestivum × Thinopyrum ponticum F1 hybrid and its parents

    图 3  (小麦 × 长穗偃麦草) F1及双亲光合色素含量、可溶性糖及丙二醛含量

    Figure 3.  Comparison of the content of total chlorophyll, carotenoids, soluble sugar, and malondialdehyde (MDA) in the Triticum aestivum × Thinopyrum ponticum F1欢乐牛牛 hybrid and its parents

    图 4  大田条件下草F1与长穗偃麦草光合色素与糖含量比较

    Figure 4.  Comparison of the content of total chlorophyll, carotenoids, and sugars in the Triticum aestivum (Zhongnong 28) × Thinopyrum ponticum F1 hybrid and T. ponticum. FW: fresh weight.

    表 1  (小麦 × 长穗偃麦草) F1与双亲主要农艺性状比较

    Table 1.  Comparison of agronomic traits in the Triticum aestivum × Thinopyrum ponticum F1 hybrid and its parents

    性状 Trait小麦 T. aestivum长穗偃麦草 Th. ponticumF1
    分蘖数 Tiller number13.67 ± 0.93Aa8.25 ± 1.41Bb10.81 ± 0.62ABb
    总叶片数 Total leaf number4.89 ± 0.26Aa3.75 ± 0.16Bb4.56 ± 0.12Aa
    叶长 Leaf length (cm)41.05 ± 0.93Aa32.00 ± 2.02Bb40.88 ± 1.42Aa
    叶宽 Leaf width (cm)0.88 ± 0.01Aa0.50 ± 0.04Bc0.77 ± 0.02Ab
    开花期 Flowering time (d)116.00 ± 0.37Cc173.42 ± 2.19Aa156.00 ± 0.62Bb
    株高 Plant height (cm)71.33 ± 0.83Bb128.12 ± 11.59Aa130.72 ± 2.82Aa
    单株鲜重 Fresh weight (g)46.92 ± 1.86Aa44.32 ± 3.72Aa42.68 ± 1.85Aa
    再生鲜重 Regeneration fresh weight (g)8.77 ± 1.3615.45 ± 1.585**
     –表示未测定。
     – indicates not available.
    下载: 导出CSV

    表 2  北京、南皮(小麦 × 长穗偃麦草)F1与长穗偃麦草多次刈割的鲜草产量

    Table 2.  Herbage yield of the Triticum aestivum (Zhongnong 28) × Thinopyrum ponticum F1 hybrid and Th. ponticum from multiple mowing events (cuts/year) in Beijing and Nanpi.

    试点
    Location
    种植方式
    Planting patterns
    基因型
    Genotypes
    三次刈割 Three cuts(kg·hm–2)两次刈割 Two cuts(kg·hm–2)一次刈割 One cut(kg·hm–2)
    北京
    Beijing
    种子直播
    Seed planting
    Thp 20 573.8 ± 4 771.8 26 092.9 ± 3 875.1 19 925.6 ± 3 570.7
    F1 41 863.7 ± 11 335.2** 43 434.5 ± 1 263.1** 32 249.3 ± 1 319.4**
    分株移栽
    Dividing plants
    Thp 43 713.5 ± 3 512.6 65 026.1 ± 1 117.1 18 761.3 ± 5 919.2
    F1 49 410.9 ± 4 102.6 65 180.3 ± 162.2 22 718.6 ± 864.5*
    南皮
    Nanpi
    分株移栽
    Dividing plants
    Thp 41 205.8 ± 19 773.8 34 770.3 ± 4 386.9
    F1 65 466.2 ± 14 797.6* 54 400.9 ± 3 470.2*
    分株移栽
    Dividing plants
    Thp 31 264.9 ± 3 208.3
    F1 38 669.3 ± 5 504.7*
     #表示分株移栽2年;Thp表示长穗偃麦草;F1表示普通小麦与长穗偃麦草的杂交
    F1***分别表示草
    F1与长穗偃麦草差异显著(P < 0.05和P < 0.01)。
     #denotes cultivation for two years through dividing plants; Thp denotes Th. ponticum; F1, denotes F1 plants from T. aestivum Zhongnong 28 × Th. Ponticum*and** indicate significant differences between F1 and Th. ponticum at P < 0.05 and P < 0.01, respectively.
    下载: 导出CSV
    欢乐牛牛_官网APP下载 欧洲杯足球竞猜|官网 欧洲杯足球竞猜|官网 欧洲杯足球竞猜|官网 天博体育官网|app下载 欧洲杯足球竞猜|官网 天博体育官网|app下载 天博体育官网|app下载 天博体育官网|app下载
  • <code id='5u711'><i id='5u711'><q id='5u711'><legend id='5u711'><pre id='5u711'><style id='5u711'><acronym id='5u711'><i id='5u711'><form id='5u711'><option id='5u711'><center id='5u711'></center></option></form></i></acronym></style><tt id='5u711'></tt></pre></legend></q></i></code><center id='5u711'></center>

      <dd id='5u711'></dd>

          <style id='5u711'></style><sub id='5u711'><dfn id='5u711'><abbr id='5u711'><big id='5u711'><bdo id='5u711'></bdo></big></abbr></dfn></sub>
          <dir id='5u711'></dir>
      1. 加载中
      2. 图(4)表(2)
        计量
        • PDF下载量:  1
        • 文章访问数:  10
        • HTML全文浏览量:  6
        文章相关
        通讯作者: 陈斌,
        • 1. 

          欢乐牛牛SHENYANGHUAGONGDAXUECAILIAOKEXUEYUGONGCHENGXUEYUAN SHENYANG 110142

        1. 本站搜索
        2. 百度学术搜索
        3. 万方数据库搜索
        4. CNKI搜索

        /

        返回文章
        欢乐牛牛_官网APP下载 欧洲杯足球竞猜|官网 欧洲杯足球竞猜|官网 欧洲杯足球竞猜|官网 天博体育官网|app下载 欧洲杯足球竞猜|官网 天博体育官网|app下载 天博体育官网|app下载 天博体育官网|app下载